目次
1.要旨
2.市場ダイナミクス
2.1.市場促進要因と機会
2.2.市場の阻害要因と課題
2.3.市場動向
2.4.コビッド19効果
2.5.サプライチェーン分析
2.6.政策と規制の枠組み
2.7.業界専門家の見解
3.調査方法
3.1.二次調査
3.2.一次データ収集
3.3.市場形成と検証
3.4.報告書作成、品質チェック、納品
4.市場構造
4.1.市場への配慮
4.2.前提条件
4.3.制限事項
4.4.略語
4.5.情報源
4.6.定義
5.経済・人口統計
6.世界のエンジニアードウッド市場の展望
6.1.金額別市場規模
6.2.地域別市場シェア
6.3.市場規模および予測、タイプ別
6.4.市場規模・予測:用途別
6.5.市場規模・予測:エンドユーザー別
7.北米のエンジニアードウッド市場の展望
7.1.市場規模:金額別
7.2.国別市場シェア
7.3.市場規模および予測、タイプ別
7.4.市場規模・予測:用途別
7.5.市場規模・予測:エンドユーザー別
7.6.米国のエンジニアードウッド市場の展望
7.6.1.市場規模:金額別
7.6.2.タイプ別市場規模及び予測
7.6.3.用途別市場規模・予測
7.6.4.エンドユーザー別市場規模・予測
7.7.カナダ人工木材市場の展望
7.7.1.金額別市場規模
7.7.2.タイプ別市場規模と予測
7.7.3.用途別市場規模・予測
7.7.4.エンドユーザー別市場規模・予測
7.8.メキシコのエンジニアードウッド市場の展望
7.8.1.金額別市場規模
7.8.2.タイプ別市場規模及び予測
7.8.3.用途別市場規模・予測
7.8.4.エンドユーザー別市場規模・予測
8.欧州エンジニアードウッド市場の展望
8.1.金額別市場規模
8.2.国別市場シェア
8.3.市場規模および予測、タイプ別
8.4.市場規模・予測:用途別
8.5.市場規模・予測:エンドユーザー別
8.6.ドイツのエンジニアードウッド市場の展望
8.6.1.市場規模:金額別
8.6.2.タイプ別市場規模及び予測
8.6.3.用途別市場規模・予測
8.6.4.エンドユーザー別市場規模・予測
8.7.イギリスのエンジニアードウッド市場の展望
8.7.1.金額別市場規模
8.7.2.タイプ別市場規模及び予測
8.7.3.用途別市場規模・予測
8.7.4.エンドユーザー別市場規模・予測
8.8.フランス人工木材市場の展望
8.8.1.金額別市場規模
8.8.2.タイプ別市場規模及び予測
8.8.3.用途別市場規模・予測
8.8.4.エンドユーザー別市場規模・予測
8.9.イタリアのエンジニアードウッド市場の展望
8.9.1.金額別市場規模
8.9.2.タイプ別市場規模及び予測
8.9.3.用途別市場規模・予測
8.9.4.エンドユーザー別市場規模・予測
8.10.スペインのエンジニアードウッド市場の展望
8.10.1.金額別市場規模
8.10.2.タイプ別市場規模及び予測
8.10.3.用途別市場規模・予測
8.10.4.エンドユーザー別市場規模・予測
8.11.ロシアのエンジニアードウッド市場の展望
8.11.1.金額別市場規模
8.11.2.タイプ別市場規模及び予測
8.11.3.用途別市場規模・予測
8.11.4.エンドユーザー別市場規模・予測
9.アジア太平洋地域のエンジニアードウッド市場の展望
9.1.金額別市場規模
9.2.国別市場シェア
9.3.市場規模および予測, タイプ別
9.4.市場規模・予測:用途別
9.5.市場規模・予測:エンドユーザー別
9.6.中国エンジニアードウッド市場の展望
9.6.1.市場規模:金額別
9.6.2.タイプ別市場規模及び予測
9.6.3.用途別市場規模・予測
9.6.4.エンドユーザー別市場規模・予測
9.7.日本の人工木材市場の展望
9.7.1.金額別市場規模
9.7.2.タイプ別市場規模及び予測
9.7.3.用途別市場規模・予測
9.7.4.エンドユーザー別市場規模・予測
9.8.インドのエンジニアードウッド市場の展望
9.8.1.金額別市場規模
9.8.2.タイプ別市場規模及び予測
9.8.3.用途別市場規模・予測
9.8.4.エンドユーザー別市場規模・予測
9.9.オーストラリアの人工木材市場の展望
9.9.1.金額別市場規模
9.9.2.タイプ別市場規模及び予測
9.9.3.用途別市場規模・予測
9.9.4.エンドユーザー別市場規模・予測
9.10.韓国のエンジニアードウッド市場の展望
9.10.1.金額別市場規模
9.10.2.タイプ別市場規模及び予測
9.10.3.用途別市場規模・予測
9.10.4.エンドユーザー別市場規模・予測
10.南米のエンジニアードウッド市場の展望
10.1.金額別市場規模
10.2.国別市場シェア
10.3.市場規模および予測、タイプ別
10.4.市場規模・予測:用途別
10.5.市場規模・予測:エンドユーザー別
10.6.ブラジル人工木材市場の展望
10.6.1.市場規模:金額別
10.6.2.タイプ別市場規模及び予測
10.6.3.用途別市場規模・予測
10.6.4.エンドユーザー別市場規模・予測
10.7.アルゼンチンのエンジニアードウッド市場展望
10.7.1.金額別市場規模
10.7.2.タイプ別市場規模及び予測
10.7.3.用途別市場規模・予測
10.7.4.エンドユーザー別市場規模・予測
10.8.コロンビアの人工木材市場の展望
10.8.1.金額別市場規模
10.8.2.タイプ別市場規模及び予測
10.8.3.用途別市場規模・予測
10.8.4.エンドユーザー別市場規模・予測
11.中東・アフリカのエンジニアードウッド市場展望
11.1.金額別市場規模
11.2.国別市場シェア
11.3.市場規模および予測、タイプ別
11.4.市場規模・予測:用途別
11.5.市場規模・予測:エンドユーザー別
11.6.UAEエンジニアードウッド市場の展望
11.6.1.市場規模:金額別
11.6.2.タイプ別市場規模及び予測
11.6.3.用途別市場規模・予測
11.6.4.エンドユーザー別市場規模・予測
11.7.サウジアラビアのエンジニアードウッド市場展望
11.7.1.金額別市場規模
11.7.2.タイプ別市場規模及び予測
11.7.3.用途別市場規模・予測
11.7.4.エンドユーザー別市場規模・予測
11.8.南アフリカのエンジニアードウッド市場展望
11.8.1.金額別市場規模
11.8.2.タイプ別市場規模及び予測
11.8.3.用途別市場規模・予測
11.8.4.エンドユーザー別市場規模・予測
12.競争環境
12.1.競合ダッシュボード
12.2.主要企業の事業戦略
12.3.ポーターの5つの力
12.4.会社概要
12.4.1.ボイシ・カスケード
12.4.1.1.会社概要
12.4.1.2.会社概要
12.4.1.3.財務ハイライト
12.4.1.4.地理的洞察
12.4.1.5.事業セグメントと業績
12.4.1.6.製品ポートフォリオ
12.4.1.7.主要役員
12.4.1.8.戦略的な動きと展開
12.4.2.UPM-Kymmene Oyj
12.4.3.UFPインダストリーズ社
12.4.4.センチュリー・プライボード
12.4.5.West Fraser Timber Co.Ltd.
12.4.6.グリーンプライ・インダストリーズ・リミテッド
12.4.7.クロノスパン
12.4.8.セルロサ・アラウコ・イ・コンスティトゥシオン
12.4.9.ルイジアナ・パシフィック・コーポレーション
12.4.10.ポトラッチ・デルティック・コーポレーション
12.4.11.ウェアハウザー社
12.4.12.モホークインダストリーズ
12.4.13.ローズバーグ・フォレスト・プロダクツ
12.4.14.フリッツ・エッガー
12.4.15.ファイファー・グループ
12.4.16.ストラ・エンソ社
12.4.17.メッツァ・ウッド
12.4.18.コーク・インダストリーズ社
12.4.19.アーキッド・プライ・インダストリーズ社
12.4.20.カジャリアセラミックス
13.戦略的提言
14.付録
14.1.よくある質問
14.2.注意事項
14.3.関連レポート
15.免責事項
図表一覧
図1:エンジニアードウッドの世界市場規模(億米ドル)、地域別、2023年・2029年
図2: 市場魅力度指数(2029年地域別)
図3:市場魅力度指数(2029年セグメント別
図4:エンジニアードウッドの世界市場規模(金額ベース)(2018年、2023年、2029F)(単位:億米ドル)
図5:エンジニアードウッドの世界市場地域別シェア(2023年)
図6:北米のエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図7:北米のエンジニアードウッド市場国別シェア(2023年)
図8:アメリカのエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図9:カナダのエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図10:メキシコのエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図11:欧州のエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図12:ヨーロッパのエンジニアードウッド市場国別シェア(2023年)
図13:ドイツのエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図14:イギリスのエンジニアードウッド市場規模:金額(2018年、2023年、2029F)(単位:億米ドル)
図15: フランスのエンジニアードウッド市場規模:金額(2018年、2023年&2029F) (単位:USD Billion)
図16:イタリアのエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図17:スペインのエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図18:ロシアのエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図19:アジア太平洋地域のエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図20:アジア太平洋地域のエンジニアードウッド市場国別シェア(2023年)
図21:中国エンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図22:日本のエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図23:インドのエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図24:オーストラリアのエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図25:韓国のエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図26:南米のエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図27:南米のエンジニアードウッド市場国別シェア(2023年)
図28:ブラジルブラジルのエンジニアードウッド市場規模:金額(2018年、2023年、2029年) (単位:億米ドル)
図29:アルゼンチンアルゼンチンのエンジニアードウッド市場規模:金額(2018年、2023年、2029F)(単位:億米ドル)
図30:コロンビアのエンジニアードウッド市場規模:金額(2018, 2023 & 2029F) (単位:USD Billion)
図31:中東・アフリカのエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図32:中東・アフリカのエンジニアードウッド市場国別シェア(2023年)
図33:UAEのエンジニアードウッド市場規模:金額(2018年、2023年、2029年) (単位:億米ドル)
図34:サウジアラビアのエンジニアードウッド市場規模:金額(2018年、2023年、2029年)(億米ドル)
図35:南アフリカのエンジニアードウッド市場規模:金額(2018年、2023年、2029年) (単位:億米ドル)
図36:上位5社の競争ダッシュボード(2023年
図 38:世界のエンジニアードウッド市場のポーターの5つの力
表一覧
表1:エンジニアードウッド世界市場スナップショット、セグメント別(2023年・2029年)(単位:億米ドル)
表2:エンジニアードウッド市場の影響要因(2023年
表3:上位10カ国の経済スナップショット(2022年
表4:その他の主要国の経済スナップショット(2022年
表5:外国通貨から米ドルへの平均為替レート
表7:エンジニアードウッドの世界市場規模及び予測(タイプ別)(2018年〜2029年)(単位:億米ドル
表8:エンジニアードウッドの世界市場規模・予測:用途別(2018〜2029F)(単位:億米ドル)
表9:エンジニアードウッドの世界市場規模・予測:エンドユーザー別(2018〜2029F) (単位:USD Billion)
表10:北米のエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:USD Billion)
表11:北米のエンジニアードウッド市場規模・予測:用途別 (2018〜2029F) (単位:USD Billion)
表12:北米のエンジニアードウッド市場規模・予測:エンドユーザー別(2018〜2029F) (単位:USD Billion)
表13:米国のエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:USD Billion)
表14:米国のエンジニアードウッド市場規模・用途別予測(2018〜2029F) (単位:USD Billion)
表15:アメリカ エンジニアードウッド市場規模・予測:エンドユーザー別 (2018〜2029F) (単位:USD Billion)
表16:カナダのエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:USD Billion)
表17:カナダのエンジニアードウッド市場規模・用途別予測(2018〜2029F) (単位:USD Billion)
表18:カナダのエンジニアードウッド市場規模・予測:エンドユーザー別(2018〜2029F) (単位:USD Billion)
表19:メキシコのエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:USD Billion)
表20:メキシコのエンジニアードウッド市場規模・用途別予測(2018〜2029F) (単位:USD Billion)
表21:メキシコのエンジニアードウッド市場規模・予測:エンドユーザー別(2018〜2029F) (単位:USD Billion)
表22:ヨーロッパエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:USD Billion)
表23:欧州のエンジニアードウッド市場規模・予測:用途別(2018〜2029F) (単位:USD Billion)
表24:欧州のエンジニアードウッド市場規模・予測:エンドユーザー別(2018〜2029F) (単位:USD Billion)
表25:ドイツのエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:USD Billion)
表26:ドイツのエンジニアードウッド市場規模・予測:用途別 (2018〜2029F) (単位:億米ドル)
表27:ドイツのエンジニアードウッド市場規模・予測:エンドユーザー別(2018〜2029F) (単位:USD Billion)
表28:イギリス 人工木材の種類別市場規模・予測(2018〜2029F) (単位:億米ドル)
表29:イギリスのエンジニアードウッド市場規模・予測:用途別 (2018〜2029F) (単位:億米ドル)
表30:イギリスのエンジニアードウッド市場規模・予測:エンドユーザー別 (2018〜2029F) (単位:億米ドル)
表31:フランス 人工木材の市場規模及び予測 タイプ別 (2018〜2029F) (単位:億米ドル)
表32:フランス人工木材の用途別市場規模・予測(2018~2029F) (単位:億米ドル)
表33:フランス人工木材の市場規模及び予測:エンドユーザー別(2018~2029F) (単位:億米ドル)
表34:イタリア エンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:億米ドル)
表35:イタリアのエンジニアードウッド市場規模・用途別予測 (2018〜2029F) (単位:億米ドル)
表36:イタリアのエンジニアードウッド市場規模・予測:エンドユーザー別 (2018〜2029F) (単位:億米ドル)
表37:スペインのエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:USD Billion)
表38:スペインのエンジニアードウッド市場規模・用途別予測(2018〜2029F) (単位:億米ドル)
表39:スペインのエンジニアードウッド市場規模・予測:エンドユーザー別(2018〜2029F) (単位:USD Billion)
表40:ロシア 人工木材の市場規模及び予測 タイプ別 (2018〜2029F) (単位:億米ドル)
表41:ロシア人工木材市場規模・用途別予測 (2018〜2029F) (単位:億米ドル)
表42:ロシア人工木材の市場規模・予測:エンドユーザー別 (2018〜2029F) (単位:億米ドル)
表43:アジア太平洋地域のエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:USD Billion)
表44:アジア太平洋地域のエンジニアードウッド市場規模・予測:用途別(2018〜2029F)(単位:億米ドル)
表 45:アジア太平洋地域のエンジニアードウッド市場規模・予測:エンドユーザー別(2018〜2029F) (単位:USD Billion)
表 46:中国エンジニアードウッド市場規模・予測:タイプ別(2018〜2029F)(単位:億米ドル)
表 47:中国エンジニアードウッド市場規模・予測:用途別(2018〜2029F)(単位:億米ドル)
表 48:中国エンジニアードウッド市場規模・予測:エンドユーザー別(2018〜2029F) (単位:億米ドル)
表49:日本のエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:USD Billion)
表50:日本のエンジニアードウッドの用途別市場規模・予測(2018〜2029F) (単位:USD Billion)
表51:日本のエンジニアードウッド市場日本のエンジニアードウッド市場規模・予測:エンドユーザー別(2018〜2029F)(単位:億米ドル)
表52:インドインドのエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:USD Billion)
表53:インドのエンジニアードウッド市場規模・予測:用途別(2018〜2029F) (単位:億米ドル)
表54:インドのエンジニアードウッド市場規模・予測:エンドユーザー別(2018〜2029F) (単位:USD Billion)
表55:オーストラリアオーストラリア エンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:USD Billion)
表56:オーストラリアのエンジニアードウッド市場オーストラリア 人工木材市場規模・用途別予測 (2018〜2029F) (単位:億米ドル)
表 57:オーストラリア 人工木材の市場規模・予測:エンドユーザー別 (2018〜2029F) (単位:億米ドル)
表 58:韓国のエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:億米ドル)
表 59:韓国のエンジニアードウッド市場規模・用途別予測 (2018〜2029F) (単位:億米ドル)
表60:韓国のエンジニアードウッド市場規模・予測:エンドユーザー別(2018〜2029F) (単位:USD Billion)
表 61:南米のエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F)(単位:億米ドル)
表62:南米のエンジニアードウッド市場規模・予測:用途別(2018〜2029F)(単位:億米ドル)
表63:南米のエンジニアードウッド市場規模・予測:エンドユーザー別(2018〜2029F)(単位:億米ドル)
表64:ブラジルのエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:USD Billion)
表65:ブラジル人工木材の用途別市場規模及び予測 (2018〜2029F) (単位:億米ドル)
表 66:ブラジル人工木材の市場規模及び予測:エンドユーザー別 (2018〜2029F) (単位:億米ドル)
表67:アルゼンチンのエンジニアードウッド市場規模・予測:タイプ別(2018~2029F) (単位:億米ドル)
表68:アルゼンチンのエンジニアードウッド市場規模・用途別予測(2018~2029F) (単位:億米ドル)
表69:アルゼンチンのエンジニアードウッド市場アルゼンチンのエンジニアードウッド市場規模・予測:エンドユーザー別(2018~2029F) (単位:億米ドル)
表70:コロンビアのエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:億米ドル)
表71:コロンビアのエンジニアードウッド市場コロンビアのエンジニアードウッド市場規模・用途別予測 (2018〜2029F) (単位:億米ドル)
表72:コロンビアのエンジニアードウッド市場コロンビアのエンジニアードウッド市場規模・予測:エンドユーザー別 (2018〜2029F) (単位:億米ドル)
表73:中東・アフリカのエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:USD Billion)
表74:中東・アフリカのエンジニアードウッド市場規模・予測:用途別 (2018〜2029F) (単位:億米ドル)
表75:中東・アフリカのエンジニアードウッド市場規模・予測:エンドユーザー別(2018〜2029F) (単位:USD Billion)
表 76:アラブ首長国連邦のエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:億米ドル)
表77:アラブ首長国連邦のエンジニアードウッド市場規模・用途別予測(2018〜2029F)(単位:億米ドル)
表78:アラブ首長国連邦のエンジニアードウッド市場規模・予測:エンドユーザー別(2018~2029F) (単位:億米ドル)
表79:サウジアラビアのエンジニアードウッド市場規模・予測:タイプ別(2018〜2029F) (単位:億米ドル)
表80:サウジアラビアのエンジニアードウッド市場規模・用途別予測(2018〜2029F)(単位:USD Billion)
表81:サウジアラビアのエンジニアードウッド市場サウジアラビアのエンジニアードウッド市場規模・予測:エンドユーザー別(2018〜2029F) (単位:億米ドル)
表82: 南アフリカのエンジニアードウッド市場規模・予測(2018〜2029F) タイプ別 (単位:USD Billion)
表83:南アフリカのエンジニアードウッド市場規模・予測:用途別 (2018〜2029F) (単位:億米ドル)
表84:南アフリカのエンジニアードウッド市場規模・予測:エンドユーザー別(2018〜2029F) (単位:USD Billion)
According to the research report, “Global Engineered Wood Market Outlook, 2028” published by Bonafide Research, the market is anticipated to cross USD 400 Billion by 2029, increasing from USD 292.68 Billion in 2023. The market is expected to grow with 6.61% CAGR by 2024-29. Advancements in manufacturing processes have played a pivotal role in the industry's growth. Computer-controlled precision cutting, automated gluing systems, and high-pressure lamination techniques contribute to the production of high-quality engineered wood products with consistent strength and durability. Sustainability is a cornerstone of the engineered wood industry. Many manufacturers prioritize the use of fast-growing and renewable wood species, along with responsible forestry practices. Additionally, the industry is committed to minimizing waste and energy consumption during the manufacturing process. Engineered wood exhibits improved dimensional stability compared to solid wood. This makes it less susceptible to expansion, contraction, and warping, especially in response to changes in humidity and temperature. The manufacturing process of engineered wood allows for the optimization of strength properties. Plywood and LVL, for instance, can be engineered to provide enhanced load-bearing capacity, making them suitable for structural applications. Engineered wood often utilizes fast-growing and renewable wood species, reducing the environmental impact. Additionally, the manufacturing process minimizes waste, making it an eco-friendly choice. Engineered wood products are often more cost-effective than their solid wood counterparts. They offer a balance between performance and affordability, making them a practical choice for a wide range of applications. Engineered wood can be customized to meet specific design and performance requirements. Whether it's for structural elements, furniture, or flooring, engineered wood offers versatility in terms of size, shape, and finish.
Market Drivers
• Sustainability and Environmental Concerns: Traditional solid wood industries have faced challenges related to deforestation and environmental impact. Engineered wood, with its utilization of fast-growing and renewable wood species, as well as the ability to minimize waste in manufacturing processes, addresses these concerns. As awareness of climate change and ecological conservation grows, the demand for sustainable building materials like engineered wood is on the rise.
• Urbanization and Construction Boom: The global trend toward urbanization and the ongoing construction boom in various parts of the world are significant drivers for the engineered wood industry. As populations concentrate in urban areas, there is a heightened demand for construction materials that are not only sustainable but also cost-effective and versatile. Engineered wood products, offering strength, stability, and customization options, have become preferred choices for architects, builders, and developers involved in constructing residential and commercial structures.
Market Challenges
• Raw Material Costs and Availability: Fluctuations in raw material costs and availability pose a significant challenge for the engineered wood industry. The demand for wood, both solid and engineered, competes with various sectors, including furniture, paper, and energy. The industry must navigate the complexities of securing a consistent supply of quality raw materials while managing the impact of market fluctuations on production costs. This challenge requires strategic planning and sustainable forestry practices to ensure a stable and cost-effective supply chain.
• Regulatory Constraints and Standards: The engineered wood industry operates within a regulatory framework that governs issues such as environmental impact, safety standards, and building codes. Meeting and adapting to these regulations can be challenging as they evolve over time, varying across regions and countries. Compliance with standards, certifications, and ensuring that engineered wood products meet or exceed safety requirements is an ongoing challenge that demands continuous monitoring and adaptation to stay competitive in the market.
Market Trends
• Mass Timber Construction: The trend toward mass timber construction, utilizing engineered wood products like cross-laminated timber (CLT) and glue-laminated timber (GLT), is gaining momentum. Mass timber offers a sustainable and aesthetically pleasing alternative to traditional construction materials, with its potential for reduced carbon footprint and quicker construction times. As architects and developers increasingly recognize the benefits of mass timber, this trend is reshaping the construction landscape and driving innovation in engineered wood technologies.
• Digital Integration and Industry 4.0: The integration of digital technologies into the engineered wood industry, often referred to as Industry 4.0, is a notable trend. Automation, artificial intelligence, and data analytics are being applied to enhance efficiency in manufacturing processes, quality control, and supply chain management. This trend not only improves productivity but also contributes to better product consistency, cost optimization, and the overall competitiveness of the engineered wood industry in the evolving digital landscape.
Covid-19 Impacts
The engineered wood industry relies on a complex global supply chain for raw materials, manufacturing equipment, and transportation. The pandemic disrupted supply chains as lockdowns, travel restrictions, and workforce shortages affected the production and transportation of goods. Delays in the availability of raw materials and components created challenges for manufacturers, impacting their ability to meet demand and fulfill orders promptly. The construction industry, a major consumer of engineered wood products, experienced fluctuations in demand during the pandemic. Construction projects were delayed or halted in many regions due to lockdowns, social distancing measures, and economic uncertainties. This directly affected the demand for engineered wood products, leading to a slowdown in some segments of the industry. The residential construction sector, which is a significant market for engineered wood products, faced disruptions as a result of the pandemic. Lockdowns and economic uncertainties influenced consumer behavior, leading to a decrease in new housing starts and renovations. The slowdown in residential construction had a direct impact on the demand for engineered wood products used in home building and improvement projects. The pandemic introduced challenges related to workforce availability and safety. Many manufacturing facilities experienced temporary closures or reduced capacity due to social distancing measures and lockdowns. This affected the production capabilities of the engineered wood industry, leading to delays and increased operational costs associated with implementing health and safety measures for workers. The pandemic brought about increased costs for manufacturers in the engineered wood industry. Supply chain disruptions, higher logistics costs, and safety measures to protect workers contributed to rising operational expenses. These increased costs were often passed on to consumers, affecting the overall competitiveness of engineered wood products compared to alternative materials. Changes in consumer behavior during the pandemic also impacted the engineered wood industry. Remote work trends and the increased focus on home improvement projects led to shifts in the types of products in demand. For instance, there was an increased interest in engineered wood flooring and furniture as people spent more time at home, but other segments, such as commercial construction, experienced a decline.
The plywood segment is expected to register a significantly fast revenue growth rate during the forecast period as a result of its layered structure, plywood enhances the natural wood's intrinsic qualities while incorporating all of its advantages.
Plywood is renowned for its superior strength and durability. It is made by layering thin sheets of wood, with each layer's grain direction alternating, which enhances its structural integrity. This construction makes it resistant to warping, cracking, and splitting, making it a reliable choice for various applications. It is incredibly versatile, suitable for a wide range of applications, including furniture, cabinetry, flooring, and construction. Its adaptability stems from its ability to come in various thicknesses, grades, and sizes, making it easy to find the right type for any project. It also provides a cost-effective solution for projects requiring a strong, stable, and durable material. Plywood offers a cost-effective alternative to solid wood in many applications. The manufacturing process allows for efficient utilization of wood resources, reducing waste and making plywood more affordable than solid wood of equivalent dimensions. This cost-effectiveness has contributed to plywood's popularity, especially in large-scale construction projects where budget considerations play a significant role. Plywood is available in various grades and types, allowing users to choose the most suitable product for their specific needs. Different grades indicate the quality and appearance of the plywood, while types include options such as softwood plywood, hardwood plywood, and marine plywood, each designed for specific applications. This flexibility in product offerings enhances plywood's appeal across a diverse set of industries. Plywood is easy to work with due to its uniform structure and consistent strength. It can be cut, shaped, and drilled without the risk of splitting, which is often a concern with some solid wood species. The ease of workability makes plywood a preferred material for both professional craftsmen and DIY enthusiasts, contributing to its widespread use in construction and woodworking projects. Plywood is available in large panel sizes, which is advantageous for construction projects where larger sections of material are required. This feature reduces the need for joining multiple smaller pieces, streamlining the construction process and contributing to cost savings. The availability of large panel sizes also enhances the efficiency of plywood installation.
The construction segment holds the major market share as it is utilized in the construction sector for headers, rim boards, panels, and beams. Engineered wood is used in construction as an alternative to steel and concrete.
Engineered wood products, such as plywood, laminated veneer lumber (LVL), and glued laminated timber (GLT), are designed and manufactured to provide consistent and reliable structural strength. These materials often outperform traditional solid wood in terms of strength and load-bearing capacity. This makes them ideal for construction applications where structural integrity is crucial, including framing, roofing, and flooring. Engineered wood is less susceptible to warping, twisting, and shrinking compared to solid wood. The manufacturing process involves layering and bonding wood fibers or veneers in a way that minimizes the impact of changes in humidity and temperature on the material. This dimensional stability is particularly important in construction applications, ensuring that structures maintain their integrity over time. Engineered wood products can be customized to suit various construction elements, including beams, columns, trusses, and joists. This versatility allows architects and builders to design structures with precision and efficiency, tailoring engineered wood components to meet specific load requirements and design specifications. Engineered wood products are often manufactured in large, standardized panels or beams, enabling faster construction times. The use of prefabricated components and panelized systems can significantly accelerate the building process. This speed of construction is particularly advantageous in projects where time is a critical factor, such as in the construction of residential buildings, commercial structures, and prefabricated homes. Engineered wood often incorporates sustainable forestry practices and utilizes fast-growing wood species, reducing environmental impact. Additionally, the manufacturing process of engineered wood typically generates less waste compared to traditional milling of solid wood. The industry's commitment to sustainability aligns with the growing demand for eco-friendly construction materials, making engineered wood an attractive choice for environmentally conscious builders.
The residential segment accounted for a major revenue share in 2023 as it is widely used in building floors, walls, and roofs, giving dwellings strong and durable structures.
Immigration from rural to urban regions has fueled the growth of the new home market, which in turn stimulates the expansion of engineered wood sales in this market segment. Recent development has had the most significant impact on wood flooring sales in the past few years. Other reasons, such as household remodeling and repair work, have contributed to the expansion of the market share. With rising demand for I-beams, LVL, and plywood, it is anticipated that the global housing market and refurbishment will expand soon, benefiting construction segments. Engineered wood provides a high degree of design flexibility, allowing architects and builders to create a wide range of residential structures and features. From framing and sheathing to flooring, cabinetry, and furniture, engineered wood products can be adapted to various design styles and preferences. This versatility makes engineered wood a preferred choice for residential projects that often require customized solutions. Engineered wood products are often designed for ease of installation, reducing labor costs and construction time. Prefabricated components and standardized panel sizes enable quicker assembly on residential construction sites. This time efficiency is particularly appealing in the residential sector, where homeowners typically want their homes built or renovated efficiently. Engineered wood possesses excellent structural performance, providing the necessary strength and stability for various residential applications. Whether used in framing, subflooring, or roofing, engineered wood products deliver consistent performance, meeting or exceeding building code requirements. This reliability is crucial for ensuring the long-term stability and safety of residential structures. Residential structures are often exposed to varying environmental conditions, including changes in humidity and temperature. Engineered wood's dimensional stability, resulting from its manufacturing process, makes it less prone to warping, twisting, or expanding and contracting. This characteristic is essential for maintaining the structural integrity and aesthetics of residential components like doors, windows, and flooring. Also, engineered wood has found extensive use in residential interior applications, contributing to innovative and modern interior designs. Engineered wood flooring, cabinetry, and furniture have become popular choices for homeowners seeking both aesthetics and durability. The ability to create aesthetically pleasing and customizable interiors makes engineered wood a leading material in residential design.
The Asia Pacific will command the market with the largest share while during the forecast period as Asia-Pacific is home to the world's most significant population; thus, wood goods are in high demand.
Rapid urbanization and worldwide market expansion are occurring in developing nations. The aggressive expansion targets, enterprises establishing a globally competitive position, rich human resources, and rapid urbanization are the primary reasons for the engineered wood markets in the Asia-Pacific region to expand. Additionally, the Indian government's Pradhan Mantri Awas Yojana aimed to construct 30,000 affordable homes by 2021. This increased demand for manufactured wood on the Indian market. Similarly, the Shenzhen Municipal Government in China aims to build one million affordable residences by 2035. Government initiatives are anticipated to increase the demand for engineered wood throughout the forecast period. The Asia Pacific region is experiencing rapid urbanization, industrialization, and infrastructure development, which is driving the demand for engineered wood products. Countries such as China, India, and Japan are witnessing significant growth in the construction sector, leading to increased consumption of engineered wood materials. Additionally, rising disposable incomes, changing lifestyles, and a growing preference for eco-friendly construction materials are further fueling the demand for engineered wood in the region. The Asia Pacific region is expected to continue its robust growth in the coming years, supported by favorable government initiatives and increasing awareness about sustainable building practices.
The global market is experiencing significant growth due to various factors such as the increasing demand for sustainable construction materials, rising urbanization, and advancements in manufacturing technologies. Engineered wood, also known as composite wood or man-made wood is manufactured by binding together strands, particles, fibers, or veneers of wood with adhesives to create a strong and versatile material. It offers several advantages over traditional solid wood, including enhanced strength, dimensional stability, and resistance to moisture and pests. The market is witnessing a surge in demand from the construction and furniture industries, driven by the need for cost-effective and sustainable alternatives to solid wood. Additionally, the growing focus on green building practices and sustainable development is expected to drive the market's growth in the coming years.
• In April 2023, WoodTech Innovations unveiled a breakthrough in engineered wood technology with the introduction of a lightweight yet strong and durable engineered wood beam. The innovative design combines different wood species and engineered materials to create a beam that offers superior load-bearing capacity and structural performance. This advancement in engineered wood beams opens up possibilities for cost-effective and sustainable construction solutions in the residential and commercial sectors.
• In May 2023, GreenWood Corp launched a range of engineered wood products with improved moisture resistance and dimensional stability. The company's advanced treatment process ensures that the engineered wood retains its structural integrity even in high humidity and wet environments, making it suitable for outdoor applications such as decking and siding. This development expands the application scope of engineered wood and provides architects and builders with more versatile options.
• In June 2023, TimberTech Solutions introduced a new line of engineered wood flooring with enhanced scratch and wear resistance. The innovative surface treatment technology used in the flooring provides superior durability and longevity, making it ideal for high-traffic areas in residential and commercial settings. The development of highly durable engineered wood flooring offers an attractive alternative to traditional hardwood flooring, combining the aesthetic appeal of wood with enhanced performance characteristics.
• In Oct 2023, Boise Cascade announced that it has completed the previously announced acquisition of Brockway-Smith Company (BROSCO®), a leading wholesale distributor specializing in doors and millwork.
• In Sep 2023, West Fraser Timber Co. Ltd. announced that it has entered into an agreement to acquire Spray Lake Sawmills located in Cochrane, Alberta. This acquisition enables West Fraser to grow its footprint in Southern Alberta and expand its Canadian treated wood business, while providing access to a high-quality timber supply.
Considered in this report
• Historic year: 2018
• Base year: 2023
• Estimated year: 2024
• Forecast year: 2029
Aspects covered in this report
• Engineered Wood market Outlook with its value and forecast along with its segments
• Various drivers and challenges
• On-going trends and developments
• Top profiled companies
• Strategic recommendation
By Type
• Plywood
• Medium Density Fiberboard
• Oriented Strand Boards (OSB)
• Particle Board
• Others
By Application
• Construction
• Furniture
• Flooring
• Packaging
• Others
By End User
• Residential
• Commercial & Industrial
The approach of the report:
This report consists of a combined approach of primary and secondary research. Initially, secondary research was used to get an understanding of the market and list the companies that are present in it. The secondary research consists of third-party sources such as press releases, annual reports of companies, and government-generated reports and databases. After gathering the data from secondary sources, primary research was conducted by conducting telephone interviews with the leading players about how the market is functioning and then conducting trade calls with dealers and distributors of the market. Post this; we have started making primary calls to consumers by equally segmenting them in regional aspects, tier aspects, age group, and gender. Once we have primary data with us, we can start verifying the details obtained from secondary sources.
Intended audience
This report can be useful to industry consultants, manufacturers, suppliers, associations, and organizations related to the Engineered Wood industry, government bodies, and other stakeholders to align their market-centric strategies. In addition to marketing and presentations, it will also increase competitive knowledge about the industry.
***Please Note: It will take 48 hours (2 Business days) for delivery of the report upon order confirmation.
