無人航空機(UAV)の世界市場展望2029年

【英語タイトル】Global Unmanned Aerial Vehicle (UAV) Market Outlook, 2029

Bonafide Researchが出版した調査資料(BONA05FE-B327)・商品コード:BONA05FE-B327
・発行会社(調査会社):Bonafide Research
・発行日:2024年1月
・ページ数:195
・レポート言語:英語
・レポート形式:PDF
・納品方法:Eメール
・調査対象地域:航空宇宙・防衛
・産業分野:グローバル
◆販売価格オプション(消費税別)
Single User(1名閲覧、印刷不可)USD4,950 ⇒換算¥742,500見積依頼/購入/質問フォーム
Team License(10名閲覧、印刷可)USD6,450 ⇒換算¥967,500見積依頼/購入/質問フォーム
Corporate License(閲覧人数無制限、印刷可)USD7,450 ⇒換算¥1,117,500見積依頼/購入/質問フォーム
販売価格オプションの説明
※お支払金額:換算金額(日本円)+消費税
※納期:即日〜2営業日(3日以上かかる場合は別途表記又はご連絡)
※お支払方法:納品日+5日以内に請求書を発行・送付(請求書発行日より2ヶ月以内に銀行振込、振込先:三菱UFJ銀行/H&Iグローバルリサーチ株式会社、支払期限と方法は調整可能)
❖ レポートの概要 ❖

目次 1.要旨 2.市場ダイナミクス 2.1.市場促進要因と機会 2.2.市場の阻害要因と課題 2.3.市場動向 2.4.コビッド19効果 2.5.サプライチェーン分析 2.6.政策と規制の枠組み 2.7.業界専門家の見 … 続きを読む 無人航空機(UAV)の世界市場展望2029年

❖ レポートの目次 ❖

目次
1.要旨
2.市場ダイナミクス
2.1.市場促進要因と機会
2.2.市場の阻害要因と課題
2.3.市場動向
2.4.コビッド19効果
2.5.サプライチェーン分析
2.6.政策と規制の枠組み
2.7.業界専門家の見解
3.調査方法
3.1.二次調査
3.2.一次データ収集
3.3.市場形成と検証
3.4.報告書作成、品質チェック、納品
4.市場構造
4.1.市場への配慮
4.2.前提条件
4.3.制限事項
4.4.略語
4.5.情報源
4.6.定義
5.経済・人口統計
6.無人航空機(UAV)の世界市場展望
6.1.市場規模(金額ベース
6.2.地域別市場シェア
6.3.市場規模および予測、地域別
6.4.市場規模・予測:クラス別
6.5.市場規模・予測:タイプ別
6.6.市場規模・予測:用途別
6.7.市場規模・予測:レンジ別
6.8.市場規模・予測:動作モード別
6.9.市場規模および予測:MTOW(最大離陸重量)別
6.10.市場規模・予測:システム別
7.北米無人航空機(UAV)市場の展望
7.1.市場規模:金額別
7.2.国別市場シェア
7.3.クラス別市場規模および予測
7.4.市場規模・予測:タイプ別
7.5.市場規模・予測:用途別
7.6.市場規模・予測:レンジ別
7.7.市場規模・予測:動作モード別
7.8.市場規模・予測:MTOW(最大離陸重量)別
7.9.米国の無人航空機(UAV)市場展望
7.9.1.金額別市場規模
7.9.2.クラス別市場規模および予測
7.9.3.タイプ別市場規模・予測
7.9.4.用途別市場規模・予測
7.10.カナダの無人航空機(UAV)市場展望
7.10.1.市場規模:金額別
7.10.2.クラス別市場規模・予測
7.10.3.タイプ別市場規模・予測
7.10.4.用途別市場規模・予測
7.11.メキシコの無人航空機(UAV)市場展望
7.11.1.市場規模:金額別
7.11.2.クラス別市場規模・予測
7.11.3.タイプ別市場規模・予測
7.11.4.用途別市場規模・予測
8.欧州無人航空機(UAV)市場の展望
8.1.金額別市場規模
8.2.国別市場シェア
8.3.クラス別市場規模および予測
8.4.市場規模・予測:タイプ別
8.5.市場規模・予測:用途別
8.6.市場規模・予測:レンジ別
8.7.市場規模および予測:動作モード別
8.8.市場規模および予測:MTOW(最大離陸重量)別
8.9.ドイツの無人航空機(UAV)市場展望
8.9.1.金額別市場規模
8.9.2.クラス別市場規模および予測
8.9.3.タイプ別市場規模・予測
8.9.4.用途別市場規模・予測
8.10.イギリスの無人航空機(UAV)市場展望
8.10.1.市場規模:金額別
8.10.2.クラス別市場規模と予測
8.10.3.タイプ別市場規模・予測
8.10.4.用途別市場規模・予測
8.11.フランスの無人航空機(UAV)市場展望
8.11.1.市場規模:金額別
8.11.2.クラス別市場規模および予測
8.11.3.タイプ別市場規模・予測
8.11.4.用途別市場規模・予測
8.12.イタリアの無人航空機(UAV)市場展望
8.12.1.市場規模:金額別
8.12.2.クラス別市場規模および予測
8.12.3.タイプ別市場規模・予測
8.12.4.用途別市場規模・予測
8.13.スペインの無人航空機(UAV)市場展望
8.13.1.市場規模:金額別
8.13.2.クラス別市場規模および予測
8.13.3.タイプ別市場規模・予測
8.13.4.用途別市場規模・予測
8.14.ロシアの無人航空機(UAV)市場展望
8.14.1.金額別市場規模
8.14.2.クラス別市場規模・予測
8.14.3.タイプ別市場規模・予測
8.14.4.用途別市場規模・予測
8.15.トルコの無人航空機(UAV)市場展望
8.15.1.市場規模:金額別
8.15.2.クラス別市場規模・予測
8.15.3.タイプ別市場規模・予測
8.15.4.用途別市場規模・予測
9.アジア太平洋地域の無人航空機(UAV)市場展望
9.1.金額別市場規模
9.2.国別市場シェア
9.3.クラス別市場規模および予測
9.4.市場規模・予測:タイプ別
9.5.市場規模・予測:用途別
9.6.市場規模・予測:レンジ別
9.7.市場規模および予測:動作モード別
9.8.市場規模および予測:MTOW(最大離陸重量)別
9.9.中国の無人航空機(UAV)市場展望
9.9.1.金額別市場規模
9.9.2.クラス別市場規模と予測
9.9.3.タイプ別市場規模・予測
9.9.4.用途別市場規模・予測
9.10.日本の無人航空機(UAV)市場展望
9.10.1.金額別市場規模
9.10.2.クラス別市場規模・予測
9.10.3.タイプ別市場規模・予測
9.10.4.用途別市場規模・予測
9.11.インドの無人航空機(UAV)市場展望
9.11.1.金額別市場規模
9.11.2.クラス別市場規模・予測
9.11.3.タイプ別市場規模・予測
9.11.4.用途別市場規模・予測
9.12.オーストラリアの無人航空機(UAV)市場展望
9.12.1.金額別市場規模
9.12.2.クラス別市場規模および予測
9.12.3.タイプ別市場規模・予測
9.12.4.用途別市場規模・予測
9.13.韓国の無人航空機(UAV)市場展望
9.13.1.市場規模:金額別
9.13.2.クラス別市場規模および予測
9.13.3.タイプ別市場規模・予測
9.13.4.用途別市場規模・予測
10.南米の無人航空機(UAV)市場展望
10.1.金額別市場規模
10.2.国別市場シェア
10.3.クラス別市場規模および予測
10.4.市場規模・予測:タイプ別
10.5.市場規模・予測:用途別
10.6.市場規模・予測:レンジ別
10.7.市場規模および予測:動作モード別
10.8.市場規模および予測:MTOW(最大離陸重量)別
10.9.ブラジルの無人航空機(UAV)市場展望
10.9.1.市場規模:金額ベース
10.9.2.クラス別市場規模および予測
10.9.3.タイプ別市場規模・予測
10.9.4.用途別市場規模・予測
10.10.アルゼンチンの無人航空機(UAV)市場展望
10.10.1.市場規模:金額別
10.10.2.クラス別市場規模および予測
10.10.3.タイプ別市場規模・予測
10.10.4.用途別市場規模・予測
10.11.コロンビアの無人航空機(UAV)市場展望
10.11.1.金額別市場規模
10.11.2.クラス別市場規模・予測
10.11.3.タイプ別市場規模・予測
10.11.4.用途別市場規模・予測
11.中東・アフリカ無人航空機(UAV)市場の展望
11.1.金額別市場規模
11.2.国別市場シェア
11.3.クラス別市場規模および予測
11.4.市場規模・予測:タイプ別
11.5.市場規模・予測:用途別
11.6.市場規模・予測:レンジ別
11.7.市場規模・予測:動作モード別
11.8.市場規模および予測:MTOW(最大離陸重量)別
11.9.UAE無人航空機(UAV)市場の展望
11.9.1.金額ベースの市場規模
11.9.2.クラス別市場規模・予測
11.9.3.タイプ別市場規模・予測
11.9.4.用途別市場規模・予測
11.10.サウジアラビアの無人航空機(UAV)市場展望
11.10.1.市場規模:金額別
11.10.2.クラス別市場規模・予測
11.10.3.タイプ別市場規模・予測
11.10.4.用途別市場規模・予測
11.11.イスラエルの無人航空機(UAV)市場展望
11.11.1.金額別市場規模
11.11.2.クラス別市場規模・予測
11.11.3.タイプ別市場規模・予測
11.11.4.用途別市場規模・予測
11.12.イランの無人航空機(UAV)市場展望
11.12.1.金額別市場規模
11.12.2.クラス別市場規模・予測
11.12.3.タイプ別市場規模・予測
11.12.4.用途別市場規模・予測
11.13.南アフリカの無人航空機(UAV)市場展望
11.13.1.金額別市場規模
11.13.2.クラス別市場規模および予測
11.13.3.タイプ別市場規模・予測
11.13.4.用途別市場規模・予測
12.競争環境
12.1.競合ダッシュボード
12.2.主要企業の事業戦略
12.3.主要プレーヤーの市場シェアの洞察と分析、2022年
12.4.主要プレーヤーの市場ポジショニングマトリックス
12.5.ポーターの5つの力
12.6.会社概要
12.6.1.ノースロップ・グラマン・コーポレーション
12.6.1.1.会社概要
12.6.1.2.会社概要
12.6.1.3.財務ハイライト
12.6.1.4.地理的洞察
12.6.1.5.事業セグメントと業績
12.6.1.6.製品ポートフォリオ
12.6.1.7.主要役員
12.6.1.8.戦略的な動きと展開
12.6.2.タレスグループ
12.6.3.ロッキード・マーチン・コーポレーション
12.6.4.BAEシステムズ
12.6.5.ボーイング社
12.6.6.エルビット・システムズ
12.6.7.イスラエル航空宇宙産業
12.6.8.テキストロン
12.6.9.エアロビロンメント社
12.6.10.ゼネラル・アトミクス
12.6.11.SZ DJI Technology Co.
12.6.12.テレダイン・テクノロジー・インコーポレーテッド
12.6.13.デレア
12.6.14.レオナルドS.p.A.
12.6.15.ダッソー・アビエーションSA
12.6.16.エアバスSE
12.6.17.ユネックインターナショナル
12.6.18.パロットSA
12.6.19.ベイカーテック
12.6.20.プレシジョンホーク
13.戦略的提言
14.付録
14.1.よくある質問
14.2.注意事項
14.3.関連レポート
15.免責事項

図表一覧
図1:無人航空機(UAV)の世界市場規模(億米ドル)、地域別、2023年・2029年
図2:市場魅力度指数(2029年地域別
図3:市場魅力度指数(セグメント別) 2029年
図4:無人航空機(UAV)の世界市場規模(金額ベース)(2018年、2023年、2029F)(単位:億米ドル
図5:無人航空機(UAV)の世界地域別市場シェア(2023年)
図6:北米の無人航空機(UAV)市場規模:金額別(2018年、2023年、2029年)(単位:億米ドル)
図7:北米の無人航空機(UAV)国別市場シェア(2023年)
図8:米国の無人航空機(UAV)市場規模:金額ベース(2018年、2023年、2029F)(単位:億米ドル)
図9:カナダの無人航空機(UAV)市場規模:金額ベース(2018年、2023年、2029F)(単位:億米ドル)
図10:メキシコの無人航空機(UAV)市場規模:金額ベース(2018年、2023年、2029年F)(単位:億米ドル)
図11:ヨーロッパの無人航空機(UAV)市場規模:金額(2018年、2023年、2029F)(単位:億米ドル)
図12:ヨーロッパの無人航空機(UAV)国別市場シェア(2023年)
図13:ドイツの無人航空機(UAV)市場規模:金額ベース(2018年、2023年、2029年F)(単位:億米ドル)
図14:イギリスの無人航空機(UAV)市場規模:金額ベース(2018年、2023年、2029年F)(単位:億米ドル)
図15:フランスの無人航空機(UAV)市場規模:金額(2018年、2023年、2029年F)(単位:億米ドル)
図16:イタリアの無人航空機(UAV)市場規模:金額(2018年、2023年、2029年F)(単位:億米ドル)
図17:スペインの無人航空機(UAV)市場規模:金額(2018年、2023年、2029年F)(単位:億米ドル)
図18:ロシアの無人航空機(UAV)市場規模:金額(2018年・2023年・2029F)(単位:億米ドル)
図19:トルコの無人航空機(UAV)市場規模:金額(2018年、2023年&2029F)(単位:億米ドル)
図20:アジア太平洋地域の無人航空機(UAV)市場規模:金額(2018年、2023年、2029年F)(単位:億米ドル)
図21:アジア太平洋地域の無人航空機(UAV)国別市場シェア(2023年)
図22:中国無人航空機(UAV)市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図23:日本の無人航空機(UAV)市場規模:金額ベース(2018年、2023年、2029F)(単位:億米ドル)
図24:インドの無人航空機(UAV)市場規模:金額ベース(2018年、2023年、2029F)(単位:億米ドル)
図25:オーストラリア無人航空機(UAV)市場規模:金額ベース(2018年、2023年、2029年)(単位:億米ドル)
図26:韓国の無人航空機(UAV)市場規模:金額(2018年、2023年、2029F)(単位:億米ドル)
図27:南米の無人航空機(UAV)市場規模:金額ベース(2018年、2023年、2029年)(単位:億米ドル)
図28:南米の無人航空機市場南米の無人航空機(UAV)国別市場シェア(2023年)
図29:ブラジルブラジルの無人航空機(UAV)市場規模:金額ベース(2018年、2023年、2029年) (単位:億米ドル)
図30:アルゼンチンアルゼンチン無人航空機(UAV)市場規模:金額(2018年、2023年、2029F)(単位:億米ドル)
図31:コロンビアの無人航空機(UAV)市場規模:金額(2018年、2023年&2029F)(単位:億米ドル)
図 32:中東・アフリカ無人航空機(UAV)市場規模:金額(2018年、2023年、2029年)(単位:億米ドル)
図33:中東・アフリカ無人航空機(UAV)国別市場シェア(2023年)
図34:UAEの無人航空機(UAV)市場規模:金額ベース(2018年、2023年、2029年)(単位:億米ドル)
図35:サウジアラビアサウジアラビアの無人航空機(UAV)市場規模:金額ベース(2018年、2023年、2029F)(単位:億米ドル)
図36:イスラエルの無人航空機(UAV)市場規模:金額(2018年、2023年&2029F)(単位:億米ドル)
図37:イランの無人航空機(UAV)市場規模:金額(2018年、2023年&2029F)(単位:億米ドル)
図 38:南アフリカの無人航空機(UAV)市場規模:金額(2018年、2023年、2029年) (単位:億米ドル)
図39:南アフリカの無人航空機(UAV)市場上位5社の競争ダッシュボード(2023年
図40:主要企業の市場シェア(2023年
図41:無人航空機(UAV)世界市場のポーターの5つの力

表一覧
表1:無人航空機(UAV)の世界市場スナップショット(セグメント別)(2023年・2029年)(単位:億米ドル
表2:無人航空機(UAV)市場の影響要因(2023年
表3:上位10カ国の経済スナップショット(2022年
表4:その他の主要国の経済スナップショット(2022年
表5:外国通貨から米ドルへの平均為替レート
表6:無人航空機(UAV)の世界市場規模・地域別予測(2018年~2029F)(単位:億米ドル)
表7:無人航空機(UAV)の世界市場規模・予測:クラス別(2018年~2029F)(単位:億米ドル)
表8:無人航空機(UAV)の世界市場規模・予測:タイプ別(2018年~2029F)(単位:億米ドル)
表9:無人航空機(UAV)の世界市場規模・予測:用途別(2018~2029F)(単位:億米ドル)
表10:無人航空機(UAV)の世界市場規模・予測:航続距離別(2018~2029F)(単位:億米ドル)
表11:無人航空機(UAV)の世界市場規模・予測:運用モード別(2018〜2029F)(単位:億米ドル)
表12:無人航空機(UAV)の世界市場規模・予測:MTOW(最大離陸重量)別(2018〜2029F)(単位:億米ドル)
表13:無人航空機(UAV)の世界市場規模・予測:システム別(2018〜2029F)(単位:億米ドル)
表14:北米の無人航空機(UAV)市場規模・予測:クラス別(2018年~2029F)(単位:億米ドル)
表15:北米の無人航空機(UAV)市場規模・予測:タイプ別(2018〜2029F)(単位:億米ドル)
表16:北米の無人航空機(UAV)市場規模・予測:用途別(2018〜2029F)(単位:億米ドル)
表17:北米の無人航空機(UAV)市場規模・予測:航続距離別(2018〜2029F)(単位:億米ドル)
表18:北米の無人航空機(UAV)市場規模・予測:運用モード別(2018〜2029F)(単位:億米ドル)
表19:北米の無人航空機(UAV)市場規模・予測:MTOW(最大離陸重量)別(2018〜2029F)(単位:億米ドル)
表20:米国の無人航空機(UAV)市場規模・予測:クラス別(2018年〜2029F)(単位:億米ドル)
表21:米国の無人航空機(UAV)市場規模・予測:タイプ別(2018年〜2029F) (単位:億米ドル)
表22:米国の無人航空機(UAV)市場規模・用途別予測(2018〜2029F) (単位:億米ドル)
表23:カナダの無人航空機(UAV)市場規模・クラス別予測(2018年〜2029F)(単位:億米ドル)
表24:カナダの無人航空機(UAV)市場規模・予測:タイプ別(2018〜2029F)(単位:億米ドル)
表25:カナダの無人航空機カナダの無人航空機(UAV)市場規模・用途別予測(2018〜2029F) (単位:億米ドル)
表26:メキシコの無人航空機(UAV)市場規模・予測:クラス別 (2018〜2029F) (単位:億米ドル)
表27:メキシコの無人航空機メキシコの無人航空機(UAV)市場規模・タイプ別予測 (2018〜2029F) (単位:億米ドル)
表28:メキシコの無人航空機メキシコの無人航空機(UAV)市場規模・用途別予測 (2018〜2029F) (単位:億米ドル)
表29:欧州の無人航空機(UAV)市場規模・予測:クラス別(2018〜2029F) (単位:億米ドル)
表30:欧州の無人航空機欧州の無人航空機(UAV)市場規模・予測:タイプ別(2018~2029F) (単位:億米ドル)
表31:欧州の無人航空機欧州の無人航空機(UAV)市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表32:欧州の無人航空機欧州の無人航空機(UAV)市場規模・予測:射程距離別(2018~2029F) (単位:億米ドル)
表33:欧州の無人航空機欧州の無人航空機(UAV)市場規模・予測:運用モード別(2018~2029F) (単位:億米ドル)
表34:欧州の無人航空機欧州の無人航空機(UAV)市場規模・予測:MTOW(最大離陸重量)別(2018〜2029F)(単位:億米ドル)
表 35:ドイツの無人航空機(UAV)市場規模・予測:クラス別(2018〜2029F) (単位:億米ドル)
表36:ドイツの無人航空機ドイツの無人航空機(UAV)市場規模・予測:タイプ別(2018年~2029F) (単位:億米ドル)
表37:ドイツの無人航空機ドイツの無人航空機(UAV)市場規模・用途別予測(2018年~2029F) (単位:億米ドル)
表 38:イギリスの無人航空機(UAV)市場規模・予測:クラス別(2018年~2029F) (単位:億米ドル)
表 39: イギリスの無人航空機イギリスの無人航空機(UAV)市場規模・予測:タイプ別(2018〜2029F) (単位:億米ドル)
表40:イギリスの無人航空機(UAV)市場規模・用途別予測(2018〜2029F) (単位:億米ドル)
表 41:フランスの無人航空機(UAV)市場規模・クラス別予測(2018~2029F)(単位:億米ドル)
表42:フランスの無人航空機フランスの無人航空機(UAV)市場規模・タイプ別予測(2018~2029F) (単位:億米ドル)
表43:フランスの無人航空機フランスの無人航空機 (UAV) 市場規模・用途別予測 (2018~2029F) (単位:億米ドル)
表44:イタリアの無人航空機(UAV)市場規模・クラス別予測(2018〜2029F) (単位:億米ドル)
表45:イタリアの無人航空機イタリアの無人航空機(UAV)市場規模・タイプ別予測 (2018〜2029F) (単位:億米ドル)
表46:イタリアの無人航空機イタリアの無人航空機(UAV)市場規模・用途別予測 (2018〜2029F) (単位:億米ドル)
表 47:スペインの無人航空機(UAV)市場規模・予測:クラス別(2018年~2029F) (単位:億米ドル)
表48:スペインの無人航空機スペインの無人航空機(UAV)市場規模・タイプ別予測(2018〜2029F) (単位:億米ドル)
表49:スペインの無人航空機スペインの無人航空機(UAV)市場規模・用途別予測 (2018〜2029F) (単位:億米ドル)
表50:ロシア無人航空機(UAV)市場規模・クラス別予測(2018年~2029F)(単位:億米ドル)
表51:ロシアの無人航空機ロシアの無人航空機(UAV)市場規模・タイプ別予測 (2018〜2029F) (単位:億米ドル)
表52:ロシアの無人航空機ロシアの無人航空機(UAV)市場規模・用途別予測 (2018〜2029F) (単位:億米ドル)
表 53: トルコトルコの無人航空機(UAV)市場規模・クラス別予測(2018~2029F) (単位:億米ドル)
表54:トルコの無人航空機トルコの無人航空機(UAV)市場規模・タイプ別予測 (2018〜2029F) (単位:億米ドル)
表55:トルコの無人航空機トルコの無人航空機(UAV)市場規模・用途別予測 (2018〜2029F) (単位:億米ドル)
表56:トルコアジア太平洋地域の無人航空機(UAV)市場規模・予測:クラス別(2018〜2029F) (単位:億米ドル)
表57:アジア太平洋地域の無人航空機アジア太平洋地域の無人航空機(UAV)市場規模・予測:タイプ別(2018年~2029F) (単位:億米ドル)
表58:アジア太平洋地域の無人航空機アジア太平洋地域の無人航空機(UAV)市場規模・予測:用途別(2018年~2029F) (単位:億米ドル)
表59:アジア太平洋地域の無人航空機アジア太平洋地域の無人航空機(UAV)市場規模・予測:航続距離別(2018~2029F) (単位:億米ドル)
表60:アジア太平洋地域の無人航空機(UAV)市場規模・予測:運用モード別(2018〜2029F)(単位:億米ドル)
表61:アジア太平洋地域の無人航空機アジア太平洋地域の無人航空機(UAV)市場規模・予測:MTOW(最大離陸重量)別(2018年~2029F)(単位:億米ドル)
表62:中国の無人航空機(UAV)市場規模・予測:クラス別(2018年~2029F) (単位:億米ドル)
表63:中国の無人航空機(UAV)市場中国の無人航空機(UAV)市場規模・予測:タイプ別(2018〜2029F) (単位:億米ドル)
表64:中国無人航空機(UAV)市場中国の無人航空機(UAV)市場規模・用途別予測(2018〜2029F) (単位:億米ドル)
表 65: 日本日本の無人航空機(UAV)市場規模・予測:クラス別(2018年~2029F) (単位:億米ドル)
表66:日本の無人航空機日本の無人航空機(UAV)市場規模・予測:タイプ別(2018年~2029F) (単位:億米ドル)
表67:日本の無人航空機日本の無人航空機(UAV)市場規模・用途別予測(2018~2029F) (単位:億米ドル)
表 68:インドの無人航空機(UAV)市場規模・予測:クラス別(2018年~2029F) (単位:億米ドル)
表69:インドの無人航空機インドの無人航空機(UAV)市場規模・予測:タイプ別(2018年~2029F) (単位:億米ドル)
表70:インドの無人航空機(UAV)市場規模・用途別予測(2018年~2029F) (単位:億米ドル)
表 71: オーストラリアオーストラリア無人航空機(UAV)市場規模・予測:クラス別(2018年~2029F) (単位:億米ドル)
表 72: オーストラリアの無人航空機オーストラリアの無人航空機(UAV)市場規模・予測:タイプ別(2018年~2029F) (単位:億米ドル)
表73:オーストラリアの無人航空機オーストラリアの無人航空機(UAV)市場規模・用途別予測(2018年~2029F) (単位:億米ドル)
表 74: オーストラリア韓国の無人航空機(UAV)市場規模・予測:クラス別(2018年~2029F) (単位:億米ドル)
表75:韓国の無人航空機(UAV)市場規模・予測:タイプ別(2018年~2029F) (単位:億米ドル)
表76:韓国の無人航空機(UAV)市場規模・用途別予測(2018年~2029F) (単位:億米ドル)
表77:南米の無人航空機(UAV)市場規模・予測:クラス別(2018年~2029F) (単位:億米ドル)
表78:南米の無人航空機南米の無人航空機(UAV)市場規模・予測:タイプ別(2018~2029F)(単位:億米ドル)
表79:南米の無人航空機南米の無人航空機(UAV)市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表80:南米の無人航空機(UAV)市場規模・予測:航続距離別(2018〜2029F)(単位:億米ドル)
表81:南米の無人航空機南米の無人航空機(UAV)市場規模・予測:運用モード別(2018〜2029F) (単位:億米ドル)
表82:南米の無人航空機(UAV)市場規模・予測:MTOW(最大離陸重量)別(2018~2029F)(単位:億米ドル)
表83:ブラジルの無人航空機(UAV)市場規模・予測:クラス別(2018〜2029F)(単位:億米ドル)
表84:ブラジルの無人航空機ブラジルの無人航空機(UAV)市場規模・タイプ別予測 (2018〜2029F) (単位:億米ドル)
表85:ブラジルの無人航空機ブラジルの無人航空機 (UAV) 市場規模・用途別予測 (2018~2029F) (単位:億米ドル)
表86:アルゼンチンの無人航空機(UAV)市場規模・クラス別予測(2018~2029F)(単位:億米ドル)
表87:アルゼンチンの無人航空機(UAV)市場規模・タイプ別予測 (2018年~2029F) (単位:億米ドル)
表88:アルゼンチンの無人航空機(UAV)市場規模・用途別予測(2018~2029F)(単位:億米ドル)
表89:コロンビアの無人航空機(UAV)市場規模・クラス別予測(2018年~2029F)(単位:億米ドル)
表90:コロンビアの無人航空機コロンビアの無人航空機(UAV)市場規模推移と予測 タイプ別 (2018〜2029F) (単位:億米ドル)
表91:コロンビアの無人航空機(UAV)市場規模・用途別予測 (2018〜2029F) (単位:億米ドル)
表92:中東・アフリカ無人航空機(UAV)市場規模・予測:クラス別(2018〜2029F) (単位:億米ドル)
表93:中東・アフリカ無人航空機(UAV)市場規模・予測:タイプ別(2018〜2029F)(単位:億米ドル)
表94:中東・アフリカ無人航空機(UAV)市場規模・予測:用途別(2018~2029F) (単位:億米ドル)
表95:中東・アフリカの無人航空機(UAV)市場中東・アフリカ無人航空機(UAV)市場規模・予測:航続距離別(2018~2029F) (単位:億米ドル)
表96:中東・アフリカ無人航空機(UAV)市場規模・予測中東・アフリカ無人航空機(UAV)市場規模・予測:運用モード別(2018~2029F) (単位:億米ドル)
表97:中東・アフリカ無人航空機(UAV)市場中東・アフリカ無人航空機(UAV)市場規模・予測:MTOW(最大離陸重量)別(2018~2029F)(単位:億米ドル)
表 98:アラブ首長国連邦の無人航空機(UAV)市場規模・予測:クラス別(2018〜2029F) (単位:億米ドル)
表99:アラブ首長国連邦の無人航空機アラブ首長国連邦の無人航空機(UAV)市場規模・予測:種類別 (2018年~2029F) (単位:億米ドル)
表100:アラブ首長国連邦の無人航空機(UAV)市場規模・用途別予測(2018~2029F)(単位:億米ドル)
表101:サウジアラビアの無人航空機(UAV)市場規模・クラス別予測(2018〜2029F)(単位:億米ドル)
表102:サウジアラビアの無人航空機(UAV)市場規模・予測:タイプ別 (2018〜2029F) (単位:億米ドル)
表103:サウジアラビアの無人航空機(UAV)市場規模・用途別予測(2018~2029F)(単位:億米ドル)
表104:イスラエルの無人航空機(UAV)市場規模・クラス別予測(2018~2029F)(単位:億米ドル)
表105:イスラエルの無人航空機(UAV)市場規模・タイプ別予測(2018~2029F)(単位:億米ドル)
表106:イスラエルの無人航空機(UAV)市場規模・用途別予測(2018~2029F)(単位:億米ドル)
表107:イランの無人航空機(UAV)市場規模・クラス別予測(2018~2029F)(単位:億米ドル)
表108:イランの無人航空機(UAV)市場規模・タイプ別予測(2018〜2029F) (単位:億米ドル)
表109:イランの無人航空機(UAV)市場規模・用途別予測(2018~2029F)(単位:億米ドル)
表110:南アフリカの無人航空機(UAV)市場規模・クラス別予測(2018〜2029F)(単位:億米ドル)
表111:南アフリカの無人航空機南アフリカの無人航空機(UAV)市場規模・予測:タイプ別(2018年~2029F) (単位:億米ドル)
表112: 南アフリカの無人航空機 (UAV) 市場規模・用途別予測 (2018~2029F) (単位:億米ドル)

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have rapidly emerged as game-changers in various industries, transforming the way we approach tasks that range from surveillance and agriculture to filmmaking and parcel delivery. UAVs have come a long way since their military origins, and their versatility, efficiency, and affordability have made them increasingly indispensable in both civilian and commercial applications. The concept of UAVs dates back to the early 20th century when the first attempts at remote-controlled aircraft were made. However, it wasn't until the latter half of the century that significant advancements in technology allowed for the development of more sophisticated unmanned systems. Military applications dominated the initial use of UAVs, with reconnaissance and surveillance being the primary focus. In recent years, there has been a notable shift towards civilian and commercial applications, thanks to advancements in miniaturization, sensor technology, and communication systems. This evolution has led to a diverse range of UAV designs, from fixed-wing aircraft to multi-rotor drones, each tailored to specific purposes. The Unmanned Aerial Vehicle (UAV) industry has undergone a remarkable transformation, evolving from its military roots into a dynamic and rapidly expanding sector with diverse applications. As technology continues to advance, the UAV industry is poised for exponential growth, shaping the future of aviation, data acquisition, and various other sectors. The UAV industry has experienced significant growth over the past decade, fueled by advancements in miniaturization, sensor technologies, and communication systems. While military applications continue to be substantial, civilian and commercial sectors have become primary drivers of growth. The global UAV market encompasses a wide range of vehicles, from small consumer drones to sophisticated, high-altitude, long-endurance (HALE) UAVs. Several companies have emerged as leaders in the UAV industry, each contributing to the sector's growth with innovations and advancements. DJI, a Chinese technology company, dominates the consumer drone market, offering a wide range of user-friendly and high-performance UAVs. Other notable players include Northrop Grumman, Boeing, Lockheed Martin, and General Atomics, who have a significant presence in military and defense applications.

According to the research report, “Global Unmanned Aerial Vehicles (UAVs) Market Outlook, 2029” published by Bonafide Research, the market is anticipated to cross USD 55 Billion by 2029, increasing from USD 31.54 Billion in 2023. The market is expected to grow with 10.29% CAGR by 2024-29. Advances in miniaturization have allowed for the development of smaller and lighter UAVs with improved power-to-weight ratios. This has increased the agility, efficiency, and payload capacity of UAVs. High-quality sensors, including cameras, LiDAR, and thermal imaging devices, have become more compact and affordable. These sensors enhance the capabilities of UAVs, enabling applications such as precision agriculture, infrastructure inspection, and environmental monitoring. Improvements in battery technology have extended flight times and operational ranges, addressing one of the significant limitations of UAVs. Longer flight times enhance their utility in various applications, including surveillance, surveying, and delivery. UAVs play a crucial role in precision agriculture by providing farmers with real-time data on crop health, moisture levels, and pest infestations. This aids in optimizing resource use and increasing overall agricultural efficiency. UAVs are increasingly used for inspecting critical infrastructure such as bridges, power lines, and pipelines. Their ability to access hard-to-reach areas reduces the need for manual inspections and improves safety. Consumer drones equipped with high-quality cameras have revolutionized the film and photography industry, enabling filmmakers to capture unique aerial perspectives at a fraction of the cost of traditional methods. UAVs contribute to search and rescue operations by providing real-time aerial views, helping locate missing persons or assess disaster-stricken areas more efficiently. UAVs often offer a cost-effective alternative to traditional methods in various industries. For example, using drones for aerial surveys, surveillance, and inspections can be more economical than employing manned aircraft or ground personnel. UAVs can rapidly cover large areas and collect data more quickly than traditional methods, leading to time savings in applications such as surveying, mapping, and environmental monitoring. The consumer drone market has seen explosive growth, with hobbyists, photographers, and enthusiasts driving demand. This consumer interest has fueled innovation and lowered production costs, making UAVs more accessible for commercial and industrial applications. Governments around the world are recognizing the economic and societal benefits of UAVs and are working to establish regulatory frameworks that balance safety and innovation. Clear regulations contribute to increased confidence among businesses and users, facilitating the integration of UAVs into various industries. The UAV industry has attracted significant investments from both public and private sectors. This influx of capital supports research and development, accelerates technological advancements, and drives market growth.
Market Drivers

• Advancements in Technology: Ongoing advancements in miniaturization have led to the development of smaller, lighter, and more agile UAVs. These improvements are crucial for expanding the range of applications, from consumer drones to industrial-grade UAVs used in agriculture, surveying, and infrastructure inspection. Additionally, increased payload capacities allow for the integration of advanced sensors and cameras, enhancing the capabilities of UAVs in data collection and analysis. The integration of automation and artificial intelligence (AI) technologies is a major driver for the UAV industry. Autonomous features, such as obstacle avoidance, path planning, and automated data analysis, increase the efficiency and safety of UAV operations. AI-powered image recognition and processing enable applications like automated agricultural monitoring and object detection in surveillance.

• Diverse Applications and Industry Expansion: UAVs have revolutionized agriculture by providing farmers with real-time data on crop health, soil conditions, and irrigation needs. Precision agriculture applications contribute to increased efficiency, reduced resource usage, and improved yields. The exploration of UAVs for last-mile delivery services by major logistics companies, such as Amazon and UPS, is a driving force. UAVs offer the potential to enhance delivery speed and reduce costs, especially in remote or challenging-to-access areas. UAVs are increasingly employed in environmental monitoring, including tracking deforestation, studying climate change, and monitoring wildlife. The ability to access remote areas and collect data in real-time is crucial for ecological research and conservation efforts.

Market Challenges

• Regulatory and Legal Challenges: The integration of UAVs into existing airspace is a complex challenge that requires the development of comprehensive regulatory frameworks. Ensuring safe and secure operations while minimizing interference with manned aircraft is a priority for regulatory bodies worldwide. As UAV usage expands, concerns about privacy and data security have emerged. Striking a balance between enabling innovative applications and protecting individual privacy remains a challenge for regulators and industry stakeholders.

• Technical and Operational Challenges: Despite advancements in battery technology, many UAVs still face limitations in terms of flight endurance and operational range. Addressing these limitations is crucial for applications such as long-range surveillance, mapping, and delivery services. Developing robust sense-and-avoid systems to prevent collisions and ensure the safety of UAV operations, especially in shared airspace, is a technical challenge. Advanced collision avoidance technology is necessary for enabling beyond-visual-line-of-sight (BVLOS) operations in various industries.

Market Trends

• Urban Air Mobility (UAM): The development of UAVs for urban air mobility, including electric vertical takeoff and landing (eVTOL) vehicles, represents a significant trend. Companies are exploring the possibility of air taxis and on-demand aerial transportation services, reshaping the future of urban mobility. The trend of using UAVs for package delivery services is on the rise. Companies are investing in the development of delivery drones capable of transporting small packages to customers, offering faster and more efficient delivery solutions.

• Swarm Technology and Collaboration: The adoption of swarm technology, where multiple UAVs operate collaboratively to achieve a common goal, is gaining traction. Swarm robotics enhance the efficiency and capabilities of UAVs in applications such as search and rescue, environmental monitoring, and surveillance. Collaboration between industry stakeholders, including UAV manufacturers, technology developers, and regulatory bodies, is a notable trend. Such collaborations aim to address challenges, establish standards, and promote responsible UAV use across various sectors.

Covid-19 Impacts

The UAV industry relies on a global supply chain for components such as sensors, processors, and batteries. Disruptions in manufacturing and transportation during the pandemic led to shortages and delays in the production of UAVs, affecting the availability of products for both consumers and industrial users. Lockdowns, social distancing measures, and labor shortages in manufacturing facilities hindered the production of UAVs. Many companies faced delays in delivering products to clients, impacting project timelines and contractual obligations. The economic impact of the pandemic led to reduced investment and funding for many industries, including UAVs. Some startups and smaller companies in the UAV sector faced challenges in securing funding for research and development, limiting their ability to innovate and expand. Governments, facing increased expenses related to healthcare and economic stimulus measures, may have redirected budgets away from defense and security projects, impacting demand for military UAVs. The agricultural sector, a significant user of UAVs for precision farming, faced uncertainties during the pandemic. Farmers, dealing with market disruptions and supply chain challenges, may have postponed or reduced investments in new technologies, including UAVs. The film and entertainment industry, which extensively uses UAVs for aerial cinematography, experienced disruptions due to lockdowns and restrictions on gatherings. Film productions were delayed or scaled back, affecting the demand for UAV services. Some regions fast-tracked regulatory approvals for UAV operations during the pandemic to facilitate essential services. This flexibility allowed for quicker deployment of UAVs in applications such as medical deliveries and emergency response. The pandemic highlighted the importance of reliable remote identification and tracking systems for UAVs. Regulatory bodies emphasized the need for secure and traceable UAV operations, leading to discussions and developments in this area.
Small UAVs (Unmanned Aerial Vehicles) are leading the way in the drone industry for several compelling reasons, reflecting their versatility, accessibility, and applicability across a wide range of sectors.

Small UAVs (Unmanned Aerial Vehicles) are typically more affordable both in terms of initial investment and operational costs, making them accessible to a broad user base. The affordability factor has not only attracted individual hobbyists but has also opened the doors for small businesses, researchers, and professionals in various industries to leverage UAV technology without significant financial barriers. Another crucial aspect is their agility and maneuverability. Small UAVs, often quadcopters or fixed-wing drones, can navigate through tight spaces, hover in place, and capture intricate details from various angles. This agility makes them particularly suitable for applications such as aerial photography, surveillance, and inspections where precision and flexibility are paramount. The compact size of small UAVs also enhances their portability, allowing users to easily transport and deploy them in diverse environments. Moreover, advancements in miniaturization and technological innovation have empowered small UAVs with impressive capabilities. These drones are now equipped with high-resolution cameras, advanced sensors, and even intelligent software for autonomous flight and data analysis. The integration of such features has expanded their applications across industries like agriculture, environmental monitoring, and infrastructure inspection. For instance, in agriculture, small UAVs can efficiently monitor crop health, assess field conditions, and optimize resource management, contributing to precision farming practices. The regulatory landscape has also played a role in the rise of small UAVs. Many countries have established more lenient regulations for drones under a certain weight threshold, which often includes small UAVs. This regulatory environment has fostered a conducive atmosphere for experimentation, innovation, and widespread adoption of small UAVs for both recreational and commercial purposes.

Fixed-wing UAVs have emerged as leaders in the unmanned aerial vehicle (UAV) positioning themselves as key players in various industries.

Major factor contributing to the dominance of fixed-wing UAVs is their unmatched endurance and range. Unlike their rotary-wing counterparts, fixed-wing drones have the ability to cover larger distances and endure longer flight times, making them ideal for applications such as mapping, surveying, and agricultural monitoring. This extended range enables fixed-wing UAVs to efficiently cover vast areas, reducing the need for frequent takeoffs and landings, which can be crucial for large-scale projects. Moreover, the aerodynamic design of fixed-wing UAVs allows for more efficient flight, resulting in higher speeds and greater energy efficiency. This efficiency translates to longer flight times and increased payload capacity, enabling fixed-wing drones to carry advanced sensors, cameras, and other specialized equipment. These attributes make fixed-wing UAVs particularly well-suited for applications that demand extensive coverage, such as environmental monitoring, forestry management, and infrastructure inspection. Another advantage lies in their stability during flight. Fixed-wing UAVs exhibit better stability and resistance to adverse weather conditions compared to their rotary-wing counterparts. This stability is crucial for capturing high-quality, stable aerial imagery and data, making fixed-wing drones the preferred choice for applications that require precision and accuracy. The versatility of fixed-wing UAVs is further enhanced by their ability to operate in challenging terrains. With the capability for long-range flights, they are well-suited for tasks like pipeline inspections, power line surveys, and wildlife tracking in remote or inaccessible areas. The fixed-wing design allows for efficient cruising at different altitudes, providing a broad spectrum of applications across industries. Additionally, fixed-wing UAVs often come equipped with sophisticated autopilot systems, enabling autonomous flight and mission planning. This autonomy streamlines operations, reduces the skill level required for piloting, and enhances the efficiency of data collection. This feature is particularly advantageous in sectors such as agriculture, where fixed-wing drones can autonomously survey large agricultural fields and provide valuable insights into crop health and yield optimization.

Based on the application, the military segment held the leading share of the UAV market in 2023 owing to high price of the military UAVs.

One main motivator for military UAV leadership is their critical role in modern combat, providing unique capabilities that improve situational awareness, information gathering, and reconnaissance without endangering human life. These UAVs act as force multipliers, increasing military forces' operating reach and giving important data to battlefield decision-makers. Technological sophistication is another key factor in the dominance of military UAVs. These UAVs often incorporate cutting-edge technologies, including advanced sensors, long-range communication systems, and autonomous flight capabilities. The integration of high-resolution cameras, infrared imaging, and signals intelligence equipment allows military UAVs to conduct surveillance and reconnaissance missions with unparalleled precision. Additionally, some military UAVs are equipped with weapon systems, transforming them into remotely piloted combat platforms capable of engaging targets with precision-guided munitions. The endurance and range of military UAVs also contribute to their leadership position. Fixed-wing military UAVs, in particular, can operate over extended periods and cover vast distances, making them suitable for intelligence, surveillance, and reconnaissance (ISR) missions across wide areas. This extended endurance allows military commanders to maintain persistent surveillance, monitor activities, and respond rapidly to emerging threats. The adaptability of military UAVs to diverse mission profiles further solidifies their leadership role. From the smaller, tactical UAVs used for close-range reconnaissance to larger, strategic UAVs with global reach, military drones can be tailored to specific operational needs. These UAVs are deployed for a range of missions, including border surveillance, target tracking and even humanitarian assistance and disaster relief efforts.

Visual Line of Sight (VLOS) UAVs (Unmanned Aerial Vehicles) are leading the industry with their operational simplicity, regulatory compliance, and suitability for various applications being key factors.

VLOS refers to the requirement that the remote pilot must maintain a direct and unobstructed line of sight with the UAV during its operation. One of the primary reasons for the dominance of VLOS UAVs is their simplicity and ease of use. Operating within the visual line of sight is inherently straightforward and allows for direct and immediate control by the remote pilot. This simplicity is attractive to a broad range of users, including hobbyists, businesses, and professionals, as it reduces the complexity of flight operations and lowers the learning curve for new operators. VLOS UAVs are often designed with user-friendly controls, making them accessible to a wider audience. Regulatory compliance is another crucial factor. Many countries have established regulations that require UAV operators to maintain visual line of sight with their drones during flight. This regulatory framework is in place to ensure safety, prevent collisions with other aircraft, and mitigate potential risks associated with flying beyond the operator's line of sight. VLOS UAVs, by adhering to these regulations, demonstrate a commitment to responsible and safe drone operations, gaining acceptance from regulatory bodies and the public. Furthermore, VLOS UAVs are well-suited for a variety of applications, especially those that do not require the drone to travel long distances or operate in complex environments. Aerial photography, recreational flying, agriculture surveys, and real estate inspections are examples of applications where VLOS UAVs excel. In these scenarios, maintaining a direct line of sight allows the operator to monitor the UAV's position, ensuring accurate data collection and precise control. The reliability and affordability of VLOS UAVs contribute to their leadership in the market. Many consumer and prosumer-grade drones fall under the VLOS category, offering a balance between performance and cost. This affordability makes VLOS UAVs attractive to a wide range of users, including hobbyists, photographers, and small businesses, fostering widespread adoption. Moreover, the current state of technology aligns well with the requirements of VLOS operations. Battery limitations, which affect flight endurance, are less of a constraint for VLOS UAVs since they are designed for relatively short-distance flights. This aligns with the capabilities of current battery technologies and mitigates some of the challenges faced by drones designed for extended range operations.

The remotely piloted segment will grow with the largest revenue share during the forecast period thanks to the remote sensing technology used to operate various products.

UAVs can be automated ‘drones’ or Remotely Piloted Vehicles (RPVs). UAVs can fly for extended flight time at low altitudes. The demand for remotely operated UAVs has increased in many countries in recent years due to the growing popularity of drone technology and its various applications. For instance, in July 2023, India is anticipated to procure 31 MQ-9B RPAS of approximately USD 3.07 billion through the U.S. government’s foreign military sales (FMS) program, which will enhance Indian Armed Forces’ intelligence, surveillance, and reconnaissance capabilities. Fully autonomous segment is anticipated to be the fastest-growing segment in 2023-2030. It includes the Command Delivery System (CDS) and the Flight Planning System (FPS), where the flight path and radius are determined before the operation. The Unmanned Aerial Vehicle has complete control without any external guidance from the operator on the ground. Mission Based High Payload UAVs (MBHPPs) are UAVs that are specially designed for specific missions in the U.S., China, Russia, and Israel. For instance, in May 2023, (SSCI) awarded a multi-million dollars, five-year prime contract to the U.S. Army Combat Capability Development Command (DEVCOM) C5ISR Center for the development, demonstration and fielding of autonomous UAVs. However, the fully autonomous systems are expected to register the largest market share during the forecast period in terms of revenue. It consists of a command delivery system and flight planning system where the operation's flight path and operational range are chosen beforehand. Without a ground operator order, the UAVs completely control it. This large payload of mission-based UAVs was created for particular missions in nations like the United States, China, Russia, and Israel.

The <25 kg maximum takeoff weight (MTOW) segment is leading in the UAV (Unmanned Aerial Vehicle) market encompassing regulatory considerations, ease of use, accessibility, and diverse applications.

Many countries have established regulations that impose fewer restrictions on UAVs weighing less than 25 kg. This weight threshold often allows for simpler and more permissive regulatory requirements compared to heavier UAVs. As a result, operators in this segment face fewer bureaucratic hurdles and can more easily comply with existing regulations. For commercial and recreational use, UAVs less than 25 kg generally benefit from streamlined approval processes, enabling operators to obtain the necessary permits and licenses more efficiently. This regulatory environment fosters a conducive atmosphere for businesses, hobbyists, and professionals, encouraging broader adoption. UAVs in the <25 kg category are often designed with user-friendliness in mind. They are generally more accessible to a diverse range of users, including hobbyists, photographers, and small businesses, due to simplified controls, lower operational complexity, and reduced training requirements. UAVs with a maximum takeoff weight below 25 kg tend to be more affordable compared to heavier counterparts. This affordability makes them attractive to a wider audience, including individuals and small businesses, contributing to their popularity in both consumer and commercial markets. This weight class is prevalent among consumer and prosumer drones, which are widely used for recreational purposes, aerial photography, and videography. These applications benefit from the ease of use, affordability, and advanced features offered by UAVs in this segment. UAVs weighing less than 25 kg find applications in various industries, including agriculture, real estate, surveying, and environmental monitor. Their maneuverability and versatility make them suitable for tasks such as mapping, monitoring, and inspection in a diverse range of environments. Advances in technology have led to the miniaturization of components, allowing manufacturers to pack advanced features into smaller UAVs. These innovations have resulted in lightweight yet powerful drones that can compete with larger models in terms of functionality and performance.

In the UAV (Unmanned Aerial Vehicle) market, platform systems play a leading role due to their ability to provide comprehensive solutions that address various aspects of UAV operations.

A platform system in the UAV context typically refers to an integrated ecosystem that encompasses hardware, software, communication tools, and data analytics. Platform systems offer a centralized command and control interface, allowing users to plan, monitor, and execute UAV missions from a unified platform. This streamlines the mission planning process, enhances situational awareness, and facilitates efficient execution of tasks. Platform systems are designed to integrate seamlessly with various UAV hardware, sensors, and payloads. This interoperability ensures that different components work together cohesively, enabling users to choose the best-in-class equipment for their specific needs while still maintaining a unified system. Platform systems centralize data storage and analysis, allowing users to manage, analyze, and derive insights from the vast amount of data generated during UAV operations. This capability is crucial for applications such as surveying, mapping, and monitoring where data-driven decision-making is paramount. Platform systems provide real-time telemetry data, enabling operators to monitor the UAV's status, location, and performance during flight. This real-time feedback enhances operational control and allows for immediate adjustments if needed. Platform systems often incorporate autonomous features, such as waypoint navigation, obstacle avoidance, and automated data collection. These capabilities reduce the workload on operators, enhance the safety of UAV operations, and contribute to the efficiency of missions. Security is a paramount concern in the UAV industry. Platform systems integrate security measures such as encrypted communication, access controls, and secure data storage to ensure the confidentiality and integrity of UAV operations. Moreover, they often incorporate features that assist in compliance with aviation regulations.

North America held the highest shares in the UAV market in 2023 and continued its domination during the forecast period due to the growing demand for commercial and military applications & rising spending on procurement of autonomous drones.

North America, particularly the United States, is home to some of the world's leading technology and aerospace companies. The region has a well-established infrastructure for research and development (R&D) in cutting-edge technologies, including UAVs. Ongoing innovation in drone technology and applications has positioned North American companies at the forefront of the global UAV market. The Federal Aviation Administration (FAA) in the United States has been proactive in developing regulations to govern UAV operations. The regulatory framework includes guidelines for commercial drone use, certifications for drone pilots, and rules for safe integration into the national airspace. The clarity and regulatory support provided by the FAA have encouraged the growth of the UAV industry in North America. North America hosts major UAV manufacturers and technology companies that contribute significantly to the industry's growth. Companies such as DJI, Northrop Grumman, Lockheed Martin, and Boeing have a strong presence in the region. The existence of these industry leaders fosters a robust industrial ecosystem that includes research institutions, startups, and supporting businesses. North America has a diverse range of industries adopting UAV technology. This includes agriculture, energy, construction, defense, filmmaking, and public safety. The widespread application of UAVs across various sectors has fueled market growth, with companies leveraging drones for tasks such as surveying, monitoring, inspection, and surveillance. North America attracts significant investments and funding in the UAV sector. Both private venture capital firms and government agencies allocate resources to support the development of drone technologies. This financial support accelerates innovation, product development, and the expansion of UAV-related businesses in the region. Government agencies in North America, including defense and public safety entities, have been early adopters of UAV technology. The use of drones for military and civil applications has set the stage for broader acceptance and integration of UAVs into various sectors.
Industry giants such as Boeing, Airbus, Amazon, DHL, Uber, and Google have invested significantly in the research & development sector over the past few years owing to lucrative opportunities offered by the market. This is also attributed to the expanding application of UAVs in all sectors such as photography, residential, spy & detective, scientific, government, and various other commercial activities. Further, the application of UAVs has also expanded to natural disaster relief activities for supplying necessary lifesaving product to the relief camp. Moreover, their application has also penetrated in forest monitoring, surveying, cinematography, aerial monitoring, and vegetation monitoring applications. Hence, the rising penetration of UAVs across various applications has opened up alluring opportunities for the market players to excel their growth.
• July 2023 - IoTechWorld Avigation Pvt. Ltd., a leading agri-drone manufacturer, won a large contract from IFFCO, a cooperative major, to supply 500 drones for spraying nano liquid urea and DAP.

• June 2023 - The U.S. Department of Defense awarded a contract to AeroVironment to develop its high-altitude solar-powered UAV. AeroVironment plans to deploy a high-altitude, long-range UAVs network to support global internet connectivity. The fixed-wing aircraft is expected to fly at approximately 65,000 ft. or 19,812 m and will carry sensors.

• June 2023 - Barfield Inc. entered into a partnership agreement with UAV manufacturer, Skydrone Robotics, to sell and support UAVs manufactured by Skydrone Robotics in the U.S., Canada, and Latin America.

• May 2023 - Garuda Aerospace, one of the world’s leading drone manufacturers, entered into a Joint Development Partnership (JDP) with Hindustan Aeronautics Limited (HAL) subsidiary Naini Aeronautics under the administration of Ministry of Defense (MoD) India. This JDP aims to allow Garuda Aerospace to produce advanced precision Drones (APDs) in India for various applications.
Considered in this report
• Historic year: 2018
• Base year: 2023
• Estimated year: 2024
• Forecast year: 2029

Aspects covered in this report
• Diabetic Footwear market Outlook with its value and forecast along with its segments
• Various drivers and challenges
• On-going trends and developments
• Top profiled companies
• Strategic recommendation

By Products
• Shoes
• Slippers
• Sneakers
• Sandals
• Others (Socks)

By Foot Condition
• Neuropathy
• Ulcers
• Deformities

By Distribution Channel
• Specialty Stores
• Hypermarket / supermarket
• Online Platform
• Others (Pharmacy store, Brand Outlets)

By End User
• Men
• Women

The approach of the report:
This report consists of a combined approach of primary and secondary research. Initially, secondary research was used to get an understanding of the market and list the companies that are present in it. The secondary research consists of third-party sources such as press releases, ann

世界の市場調査資料販売サイトのinfo.marketreport.jpです。
★調査レポート[無人航空機(UAV)の世界市場展望2029年] (コード:BONA05FE-B327)販売に関する免責事項を必ずご確認ください。
★調査レポート[無人航空機(UAV)の世界市場展望2029年]についてメールでお問い合わせ


◆H&Iグローバルリサーチのお客様(例)◆